Skip to main content

Basic Rules + Proofs

Constant Rule

Statement:

If f(x)=cf(x) = c where $ c $ is a constant, then f(x)=0f'(x) = 0.

Proof:

Using the limit definition of a derivative, f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} f(x)=limh0cchf'(x) = \lim_{h \to 0} \frac{c - c}{h} f(x)=limh00=0f'(x) = \lim_{h \to 0} 0 = 0

Sum Rule

Statement:

If f(x)f(x) and g(x)g(x) are differentiable functions, then the derivative of f(x)+g(x)f(x) + g(x) is f(x)+g(x)f'(x) + g'(x).

Proof:

ddx[f(x)+g(x)]=limh0f(x+h)+g(x+h)f(x)g(x)h\frac{d}{dx} [f(x) + g(x)] = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h} =limh0[f(x+h)f(x)h+g(x+h)g(x)h]= \lim_{h \to 0} \left[ \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right] =f(x)+g(x)= f'(x) + g'(x)

Constant Multiple Rule

Statement:

If f(x)f(x) is a differentiable function and $ c $ is a constant, then the derivative of cf(x)cf(x) is cf(x)cf'(x).

Proof:

ddx[cf(x)]=limh0c[f(x+h)f(x)]h\frac{d}{dx} [cf(x)] = \lim_{h \to 0} \frac{c[f(x+h) - f(x)]}{h} =climh0f(x+h)f(x)h= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =cf(x)= cf'(x)

Of course, here's the proof with the replacements made: